Экономия памяти для матрицы Якоби


Главный недостаток алгоритма LM состоит в том, что он требует памяти для хранения матриц больших размеров.

Например, размер матрицы Якоби состав­ляет Q´n, где Q – число обучающих наборов и n – число параметров сети. Это означает, что при оценке гессиана согласно соотношению (3.28) потребуются значительные ресурсы для ее хранения и вычисления. Как это часто делается при работе с матрицами, выполним ее декомпозицию, т. е. представим ее в виде разбиения на несколько подматриц. Допустим, что выделены 2 подматрицы; тогда соотношение (3.28) может быть записано в виде:

 

(3.32)

В этом случае уже не требуется хранить полную матрицу Якоби, а оценка гессиана может быть вычислена с использованием подматриц меньших размеров. Причем в процессе формирования матрицы Гессе использованные подматрицы могут быть удалены
из оперативной памяти.

При применении М-функции trainlm с помощью параметра mem_reduc можно указывать, на какое число подматриц разбивается исходная матрица. Если параметр mem_reduc равен 1, то используется полная матрица Якоби; если mem_reduc = 2, то матрица Якоби разбивается
по строкам на 2 части и сначала обрабатывается одна половина, а затем вторая. Это экономит половину объема памяти, требуемой для вычисления полного якобиана. Что же касается быстродействия, то оно будет частично потеряно. И если вам доступна достаточная оперативная память, то лучше устанавливать параметр mem_reduc равным 1. Это особо касается системы MATLAB, которая позволяет извлечь все преимущества при использовании математического сопроцессора. Если же все-таки имеющаяся память оказалась исчерпанной, то следует назначить параметр mem_reduc равным 2 и выполнить расчеты заново. Если и при этом памяти
не будет достаточно, следует еще увеличить значение этого параметра.

Поэтому из выше всего сказанного можно сделать вывод, что вам необходимо просмотреть много дополнительной информации и альтернатив!


Добавить комментарий


Защитный код
Обновить

Сайт создан в Seo-Dubna.ru