Многомерные цифровые фильтры в матлаб


Для проектирования многомерных цифровых фильтров в Матлаб следует применять сети ADALINE, в которых используется более одного нейрона. Это приведет к тому, что вместо вектора весов входа будет использоваться матрица весов W, а вместо единственного смещения – вектор смещений b. Структурная схема такого многомерного фильтра показана на рис. 5.12.

Описание многомерных цифровых фильтров в матлаб

Рис. 5.12

Эта схема достаточно сложна для восприятия, и ее можно представить в укрупненном виде (рис. 5.13, а).

Если в линии задержки (ЛЗ) требуется показать больше деталей, то можно использовать следующий вариант структурной схемы (рис. 5.13, б).

 

a

 

б

Рис. 5.13

Здесь ЛЗ представлена в развернутом виде, указывая, что на вход весовой матрицы подается текущее значение и значения с запаздыванием на 1 и 2 периода дискретности. Можно использовать и большее число блоков задержки, но указывать их надо в порядке возрастания сверху вниз.

В заключение отметим основные преимущества и ограничения линейных сетей:

  • Однослойные линейные сети могут решать задачи линейной аппроксимации функций и распознавания образов.
  • Однослойные линейные сети могут быть либо рассчитаны непосредственно, либо обучены с использованием правила обучения WH. Кроме того, для их настройки могут применяться процедуры адаптации.
  • Архитектура однослойной линейной сети полностью определяется задачей, которая должна будет решена, причем число входов сети и число нейронов в слое определяется числом входов и выходов задачи.
  • Адаптируемые линейные сети ADALINE находят большое практическое применение при построении цифровых фильтров для обработки сигналов.
  • Линейные нейронные сети могут быть успешно обучены только в том случае, когда входы и выходы связаны линейно. Тем не менее даже в том случае, когда линейная сеть не может найти точного решения, она в состоянии построить наиболее близкое решение в смысле минимума среднеквадратичной ошибки при условии, что параметр обучения достаточно мал. Такая сеть найдет наиболее точное решение в рамках линейной структуры сети. Это обусловлено тем, что поверхность ошибки обучения является многомерным параболоидом, имеющим единственный минимум, и алгоритм градиентного спуска должен привести решение к этому минимуму.
  • При работе с моделями линейных сетей могут возникать ситуации, когда число настраиваемых параметров недостаточно, чтобы выполнить все условия; в этом случае говорят, что сеть переопределена. Однако может иметь место и обратная ситуация, когда число настраиваемых параметров слишком велико, и в этом случае говорят, что сеть недоопределена. Тем не менее в обоих случаях метод наименьших квадратов осуществляет настройку, стремясь минимизировать ошибку сети. Эти ситуации поясняются демонстрационными примерами demolin4 и demolin5.
  • Разрешимость линейной задачи с помощью линейной нейронной сети может быть установлена следующим образом. Если суммарное количество весов и смещений линейной сети S*R + S, где R – количество входов, S – количество слоев, равно количеству пар векторов входа и цели Q, то такая задача разрешима с помощью линейной нейронной сети. Это справедливо за исключением того случая, когда векторы входа являются линейно зависимыми и используется сеть без смещений. Демонстрационный пример demolin6 поясняет эту ситуацию.

Поэтому из выше всего сказанного можно сделать вывод, что вам необходимо просмотреть много дополнительной информации и альтернатив!


Добавить комментарий


Защитный код
Обновить

Сайт создан в Seo-Dubna.ru