Сеть Хопфилда


Всякий целевой вектор можно рассматривать как набор характерных признаков некоторого объекта. Если создать рекуррентную сеть, положение равновесия которой совпадало бы с этим целевым вектором, то такую сеть можно было бы рассматривать как ассоциативную память. Поступление на вход такой сети некоторого набора признаков в виде начальных условий приводило бы ее в то или иное положение равновесия, что позволяло бы ассоциировать вход с некоторым объектом. Именно такими ассоциативными возможностями и обладают сети Хопфилда. Они относятся к классу рекуррентных нейронных сетей, обладающих тем свойством, что за конечное число тактов времени они из произвольного начального состояния приходят в состояние устойчивого равновесия, называемое аттрактором. Количество таких аттракторов определяет объем ассоциативной памяти сети Хопфилда.

Спроектировать сеть Хопфилда – это значит создать рекуррентную сеть со множеством точек равновесия, таких, что при задании начальных условий сеть в конечном счете приходит в состояние покоя в одной из этих точек. Свойство рекурсии проявляется в том, что выход сети подается обратно на вход. Можно надеяться, что выход сети установится в одной из точек равновесия. Предлагаемый ниже метод синтеза сети Хопфилда не является абсолютно совершенным в том смысле, что синтезируемая сеть в дополнение к желаемым может иметь паразитные точки равновесия. Однако число таких паразитных точек должно быть сведено к минимуму за счет конструирования метода синтеза. Более того, область притяжения точек равновесия должна быть максимально большой.

Метод синтеза сети Хопфилда основан на построении системы линейных дифференциальных уравнений первого порядка, которая задана в некотором замкнутом гиперкубе пространства состояний и имеет решения в вершинах этого гиперкуба. Такая сеть
несколько отличается от классической модели Хопфилда, но она проще для понимания и проектирования, и мы будем ссылаться на нее как на модифицированную сеть Хопфилда.

По команде help hopfield можно получить следующую информацию об М-функциях, входящих в состав ППП Neural Network Toolbox и относящихся к построению модифицированных сетей Хопфилда:

 

Hopfield recurrent networks

Рекуррентная модифицированная сеть Хопфилда

New networks

Формирование сети

newhop

Создание модифицированной сети Хопфилда

Weight functions

Операции с весовой функцией

dotprod

Скалярное произведение

Net input functions

Операции над входами

netsum

Суммирование

Transfer functions

Функции активации

satlins

Симметричная линейная функция с ограничениями

Demonstrations

Демонстрационные примеры

demohop1

demohop2

demohop3

demohop4

Пример двумерной модифицированной сети Хопфилда

Пример неустойчивой точки равновесия

Пример трехмерной модифицированной сети Хопфилда

Пример устойчивых паразитных точек равновесия

Поэтому из выше всего сказанного можно сделать вывод, что вам необходимо просмотреть много дополнительной информации и альтернатив!

Добавить комментарий


Защитный код
Обновить

Сайт создан в Seo-Dubna.ru